1. Planar glass plate

Using Snell's law, show analytically that a light beam impinging on a transparent planar glass plate exits that plate parallel to the incident direction. What is the parallel displacement of the beam behind the glass plate as a function of glass thickness *d*, glass index *n* and the angles θ_i , θ_i ?

Discuss how the light path taken through the glass plate for an incident angle, $\theta_i > 0$, (which is longer than it would have been in air) complies with Fermat's principle.

2. Dispersion in glass plate

Hecht, problem 4.20:

A narrow white beam strikes a slab of glass (d = 10 cm) at an angle $\theta_i = 60^\circ$. The indices of refraction of the glass are $n_{red} = 1.505$ and $n_{vio} = 1.545$ for red and violet, respectively. Determine the diameter of the beam emerging out of the far glass interface.

3. Critical angle

Hecht, problem 4.58:

A glass block ($n_{gl} = 1.55$) is covered with a water layer ($n_{gl} = 1.33$). What is the critical angle at the glass/water interface?

4. Transmission and reflection amplitudes

From reviewing the electrostatic boundary condition at an interface that separates media of n_i and n_t (> n_i), show that the transmission and reflection amplitudes for a light beam with polarization of \vec{E} out of the plane of incidence are related as $t_{\perp} - 1 = r_{\perp}$.

5. Transmission and reflection amplitudes II

Show analytically by starting from the Fresnel equations for t_{\perp} and r_{\perp} that $t_{\perp} - 1 = r_{\perp}$ is true for all θ .

6. Polarization angle

Show that the polarization angles for internal and external reflection at a given interface complement as $\theta_p + \theta_p' = 90^\circ$.

due: Wednesday, Sept-29, 2010 - before class

(4 pts)

(3 pts)

(3 pts)

(3 pts)

```
(3 pts)
```

(4 pts)